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Metastable configurations of spin models on random graphs

Johannes Berg and Mauro Sellitto
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One-flip stable configurations of an Ising model on a random graph with fluctuating connectivity are exam-
ined. In order to perform the quenched average of the number of stable configurations we introduce a global
order-parameter function with two arguments. The analytical results are compared with numerical simulations.
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I. INTRODUCTION

Spin models on random graphs have a long history in
statistical mechanics of disordered systems. A random gr
@1# consists ofN nodes where each node is linked at rand
to a finite number of other nodes. The resulting structure
locally treelike but has loops of a length ln(N). Associating
each nodei with an Ising-spin variablesi561 and each
connection with a bond Ji j —giving a contribution,
2Ji j sisj to the Hamiltonian—defines a spin model on a ra
dom graph. Loops in the graph are the source of frustra
of the model.

As a model of spin glasses random-graph models are
ticularly attractive@2#, since they combine the analytic a
cessibility within the framework of mean-field theory@3–5#
with the finite connectivity of short-range, finite-dimension
models. Furthermore, random-graph models occur in pr
lems of combinatorial optimization and theoretical compu
science@6,7#, where solving, e.g., a satisfiability or a matc
ing problem is equivalent to finding the ground state o
spin model on a graph. Considering statistical ensemble
such problems with the aim of characterizing typical pro
lems corresponds to defining an ensemble of random gra
Interest in random-graph models has intensified lately
led to solution schemes beyond replica symmetry@8–11#.

For fully connected systems, where the local field at e
site is the sum of many random terms, the central limit th
rem ensures that the local fields are Gaussian distributed.
distribution of fields may thus be characterized—at the le
of replica symmetry—by two variables, the mean and
variance of this distribution. The free energy is thus char
terized by a few order parameters, which are determined s
consistently. Finite-connectivity models on random grap
are mean-field models where the local fields do not consis
many terms and consequently are not Gaussian distribu
The free energy is characterized by a continuous ord
parameter function—the distribution of local fields. A ke
step simplifying the replica analysis of random-graph mod
has been the introduction of a global order-parameter fu
tion @8,9#. In the case of Hamiltonians containing two-sp
three-spin, and higher interaction terms, the sums emer
from averaging over the disorder may be disentangled u
the order parameter functionc(sI )51/N( idsI sI i

. This func-
tion gives the fraction of sites, whose replicated sp
sI i5$si

a% (a51, . . . ,n) are in a given configurationsI .
In principle any function of the spin configuration may b
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written as a sum of two-spin, three-spin, and higher inter
tion terms and used as an energy function. However, co
lations between these interactions may make the resu
Hamiltonian intractable. In this paper we discuss how to tr
random-graph models with Hamiltonians with a nontriv
dependence on the local magnetic field at each site.

The central problem in this case is to find an ord
parameter function to disentangle the result of averag
terms of the form exp$i(asi

aJij ĥj
a% over the disorderJi j ~in-

stead of the simpler exp$i(asi
aJijsj

a%, the variablesĥi
a emerge

from defining the local fieldshi
a). Furthermore such an

order-parameter function ought to admit a replica-symme
ansatz or other schemes and an analytic continuationn→0.
In this paper we show that this need is answered by a t
argument order-parameter function c(sI ,tI )
5(1/N)( idsI sI i

ehÎ i•tI . Viewing the variablesĥi
a ,hi

a as new
phase-space variables coupled to the spins, this or
parameter function may be viewed as a discrete Fou
transform of the generalization of the usual order-param
function c(sI ) to c(sI ,hÎ ) ~the local fields may be integrate
out explicitly!.

As a concrete example we calculate the quenched ave
in replica symmetry of the number of metastable configu
tions in one of the simplest models on a random graph,
ferromagnetic two-spin model. For this model some resu
have already been obtained, albeit restricted to the anne
approximation, both for graphs with fixed connectivity@12#
and fluctuating connectivity@13#. For fully connected disor-
dered systems, such as the Sherrington-Kirkpatrick mo
the problem of metastable states has been dealt with in
classic paper by Bray and Moore@14#. Metastable configu-
rations have each spin pointing in the direction of its loc
field, i.e., they are stable~or marginally stable! against
single-spin flips. As so-called inherent structures, such c
figurations play a crucial role in structural glasses@15,16#. In
spin-models of dense granular matter they play the role
blocked configurations@17–19#. Hamiltonians that nontrivi-
ally depend on the local magnetization also occur in the c
text of lattice gases, e.g., where sites with more than a cer
number of neighboring particles are energetically penali
@20#. Finally, a treatment of the dynamics of spin models
random graphs will need an order-parameter function~gen-
erating function! analogous to the one introduced here, sin
the dynamics depends explicitly on the local field at ea
point.

The paper is organized as follows. First the ferromagne
©2001 The American Physical Society15-1
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JOHANNES BERG AND MAURO SELLITTO PHYSICAL REVIEW E65 016115
two-spin model on a random graph is introduced. After d
cussing the annealed approximation to the problem, the
culation of the quenched average of the number of m
stable configurations is outlined in Sec. II. Particu
emphasis is given to the two-argument global ord
parameter function. The replica-symmetric ansatz for
order-parameter function is discussed and the repl
symmetric result for the entropy of metastable configurati
is given. These expressions are evaluated numerically
are compared to the results of Monte Carlo simulations
thermodynamic integration of an auxiliary model in Sec. I
The results of generalizing the problem to three-spin mod
are given in Sec. IV and the generalization to models w
frustrated interactions is discussed in Sec. V.

II. METASTABLE CONFIGURATIONS OF THE TWO-SPIN
FERROMAGNETIC MODEL

In the following we consider one of the simplest sp
models on a random graph, namely, the two-spin ferrom
netic model defined by the Hamiltonian

H52(
i , j

Ci j sisj , ~1!

where the sitesi 51, . . . ,N and si561. The variableCi j
51 with i , j denotes the presence of a bond connect
sites i , j and Ci j 50 denotes its absence. ChoosingCi j
51(0) randomly with probabilityc/N (12c/N) defines an
ensemble of random graphs, where the number of bonds
nected to a site is distributed with a Poisson distribution
finite averagec.

The condition for a~marginally! metastable configuration
is that at each sitei the local fieldhi5( jCi j sj obeyshisi
>0. This definition implies that a number of neutral mov
remains, as spins with zero local field may be flipped with
a cost in energy. We choose this definition, since a quenc
the system will in general leave a number of spins with z
local field, which are crucial to the subsequent dynam
@21#. Nevertheless the marginally stable states could be
cluded easily by considering only configurations with no
zero local magnetic field.

A. The annealed approximation

It is instructive to see how the average number of block
configurations is calculated in the annealed approximat
where the partition function is averaged directly over t
ensemble of random graphs, before passing to the more c
plicated case of the quenched average.
01611
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The partition function configurationsZ(b) may be written
as

Z~b!5)
i

F (
si561

(
hi52`

`

dS hi ;(
j

Ci j sj DQ~hisi !G
3expH ~b/2!(

i
hisi J , ~2!

where d(x;y)51 if x5y and 0 otherwise, denotes
Kronecker-d and Q(x) denotes a discrete Heaviside ste
function with Q(x)51 if x>0 and 0 otherwise. The func
tion ) iQ(hisi) denotes the condition for a metastable co
figuration. However, none of the subsequent steps of
calculation affect this function and it may be used to enco
any function ofhi andsi . The average over the ensemble
random graphs with connectivityc may be written as

^^~• !&&5)
i , j

E dCi j @~12c/N!d~Ci j !

1~c/N!d~Ci j 21!#~• !. ~3!

We use the integral representationd(hi ;( jCi j sj )
5*0

2p dĥi exp$2ihiĥi1i(jĥiCijsj% for the Kronecker-d,s, so
the average over the disorder yields a term of the form

)
i , j

@12c/N1~c/N!exp$ i ĥ isj1 i ĥ jsi%#

5 lim
N→`

expH 2cN/21~c/2N!(
i , j

exp~ i ĥ isj1 i ĥ jsi !J .

~4!

The sum over the site labelsi and j may be disentangled by
introducingcs

t 5(1/N)( idsis
eiĥit for s,t561. Using these

four order parameters, the average over the disorder ma
written as

expF2cN/21~c/2N!(
i , j

exp~ i ĥ isj1 i ĥ jsi !G
5expH 2cN/21~cN/2!(

s,t
cs

t ct
sJ , ~5!

where the symmetry of the exponent in Eq.~4! under inter-
change of the site labelsi and j is reflected by the symmetry
of the exponent of Eq.~5! under exchange ofs andt.

After standard manipulations, one now easily obtains
annealed average of the free energy
~1/N!ln^^Z~b!&&5extrc
6
6H ~2c/2!~c1

1212c2
1c1

21c2
22!2c/2 1 lnF (

h51

`

~eb/2Ac2
2/c1

2!hI h~2cAc2
2c1

2!

1I 0~2cAc2
2c1

2!1I 0~2cAc1
1c2

1! 1 (
h51

`

~eb/2Ac1
1/c2

1!hI h~2cAc1
1c2

1!G J , ~6!

whereI h(x) denotes the modified Bessel function of the first kind of orderh. The extremum is over the order parameterscs
t .
5-2
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B. The quenched average

Using the replica trick lnZ5limn→0]nZn to represent the logarithm of the partition function, the quenched average ov
ensemble of random graphs of the free energy of metastable configurations may be written as

^^Zn~b!&&5)
i,j

EdCij@~12c/N!d~Cij !1~c/N!d~Cij21!#

3)
i,a F (

si
a
561

(
hi

a
52`

`

dShi
a ;(

j
Cijsj

aDQ~hi
asi

a!GexpH~b/2!(
i ,a

hi
asi

aJ , ~7!

where the sum over the site indicesi is from 1 toN and the sum over the replica indices goes from 1 ton, wheren is taken
to be an integer. The Kronecker-d,s defininghi

a are again represented using auxiliary integrals over the auxiliary variableĥi
a

giving

^^Zn~b!&&5)
i , j

E dCi j @~12c/N!d~Ci j !1~c/N!d~Ci j 21!#

3)
i ,a S (

si
a
561

(
hi

a
52`

` E
0

2p

dĥi
a/~2p!D expH 2 i(

i ,a
hi

aĥi
a1 i (

i , j ,a
ĥi

aCi j sj
a1~b/2!(

i ,a
hi

asi
aJ)

i ,a
Q~hi

asi
a!, ~8!
rd
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so that the disorder termCi j occurs only a single time in the
exponent. The average over the term containing the diso
thus yields

)
i , j

F12c/N1~c/N!expH i(
a

ĥi
asj

a1 i(
a

ĥj
asi

aJ G
5 lim

N→`

expH 2cN/21~c/2N!

3(
i , j

expS i(
a

ĥi
asj

a1 i(
a

ĥj
asi

aD J . ~9!

The crucial problem at this point is to find an orde
parameter function suitable to decouple the sums over
sites in the exponent. A natural choice would
(1/N)( id(hÎ 2hÎ i)dsI siI

where the underlined terms are used

denote vectors in replica space, i.e.,sI 5$sa%. HoweverhÎ is
a vector ofcontinuousvariables, which means that there
no simple replica-symmetric ansatz for this order-param
function. Instead we generalize the order parameters use
the annealed approximation in Sec. II A and definec(sI ,tI )
5(1/N)( idsI sI i

ehÎ i•tI , wheretI is another binary vector in rep
lica space. Using this global order-parameter function of t
arguments, Eq.~9! becomes

expH 2cN/21~cN/2!(
sI ,tI

c~sI ,tI !c~tI ,sI !J . ~10!

After some formal manipulations outlined in the Appe
dix one obtains as the replicated partition function
01611
er

e
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^^Zn~b!&&5)
sI ,tI

E dc~sI ,tI !

3expH 2~cN/2!(
sI ,tI

c~sI ,tI !c~tI ,sI !2cN/2J
3F(

sI ,hI
E

0

2p

@dhÎ /~2p!n#

3expH 2 ihI •hÎ 11/2bhI •sI

1c(
tI

c~tI ,sI !eihÎ •tI J)
a

Q~hasa!GN

. ~11!

The integral over the order-parameter function may be p
formed in the thermodynamic limitN→` as a saddle-poin
integral. Using the shorthandeL for the term in square
brackets in Eq.~11! we obtain the self-consistent equatio
for the order-parameter function

c~sI ,tI !5e2L(
k50

`
ck

k! )
l 51

k S (
rI l

c~rI l ,sI ! D
3expH 1

2 b(
a

S ta1(
l

r l
aDsaJ

3)
a

QS saFta1(
l

r l
aG D , ~12!

wherer l
a is summed over the values61. The assumption

that c(sI ,tI ) is real valued is consistent with this equation.
To treat this equation in the limitn→0 we need to make

an ansatz concerning the form of the order-parameter f
5-3
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tion. The simplest possible choice is the replica-symme
~RS! ansatz, which assumes that the order-parameter f
tion is invariant under the permutation of the replica indic
01611
ic
c-
s

@22#. This in turn implies thatc(sI ,tI ) is a function of
(asa, (asata, and (ata only. The replica-symmetric
order-parameter function may thus be written as
al

by the

ver
c~sI ,tI !5E dx dy dz P~x,y,z!

expH bx(
a

sa1by(
a

sata1bz(
a

taJ
$2eby cosh@b~x1z!#12e2by cosh@b~x2z!#%n

, ~13!

where the denominator serves to normalize*dx dy dz P(x,y,z)5(sI ,tIc(sI ,tI ).
Inserting the RS ansatz~13! into the self-consistent equation~12! and taking the limitn→0 one finally obtains the

self-consistent equation forP(x,y,z) in the form of an invariant density

P~x,y,z!5e2c(
k50

`
ck

k! )
l 51

k E dxl dyl dzl P~xl ,yl ,zl !dS x2
1

4b
lnF f 11 f 12

f 21 f 22
G D dS y2

1

4b
lnF f 11 f 22

f 21 f 12
G D

3dS z2
1

4b
lnF f 11 f 21

f 12 f 22
G D , ~14!

where f st serves as a shorthand for

f st5 f ~$xl ,yl ,zl%,s,t!

5)
l 51

k

(
r l

expH b(
l

xlr l1b(
l

ylr ls1b(
l

zls1b/2s(
l

r l1b/2stJ QXsS t1(
l

r l D C. ~15!

Without the last term—that encodes the blocking condition—this expression would factorize inl.
From the RS order-parameter functionP(x,y,z) at a given value ofb one may also derive the values of physic

observables, such as the energy,

KK K2
1

2N (
i

sihiL LL5e2c(
k50

`
ck

k! )l51

k Edxl dyl dzl P~xl ,yl ,zl!

3

(
s

)
l

k

(
rl

F21
2s(

l
rlGexpHb(

l
xlrl1b(

l
ylrls1b(

l
zls11

2bsD(
l

rlQSs(
l

rlD
(
s

)
l

k

(
rl

expHb(
l

xlrl1b(
l

ylrls1b(
l

zls11
2bs(

l
rlJQSs(

l
rlD , ~16!

or the fraction of sites with a given local fieldh

K K K 2
1

2N (
i

dh;hiL L L 5e2c(
k50

`
ck

k! )l 51

k E dxl dyl dzl P~xl ,yl ,zl !

3

(
s

)
l

k

(
r l S dh;(

l
r l DexpH b(

l
xlr l1b(

l
ylr ls1b(

l
zls1 1

2 bs(
l

r l J QS s(
l

r l D
(
s

)
l

k

(
r l

expH b(
l

xlr l1b(
l

ylr ls1b(
l

zls1 1
2 bs(

l
r l J QS s(

l
r l D .

~17!

The single pointed bracketŝ& serve as a shorthand for the average over the metastable configurations as defined
partition function~7!.

Finally, inserting the RS ansatz~13! into the partition function~11!, the free energy of blocked configurations averaged o
the disorder may be obtained
5-4
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1

N
^^ ln Z&&52b f ~b!52c/2)

l 51

2 E dxl dyl dzl P~xl ,yl ,zl !

3 lnF eb(y11y2) cosh@b~x11z11x21z2!#1e2b(y11y2) cosh@b~x12z12x21z2!#

2)
l 51

2

$ebyl cosh@b~xl1zl !#1e2byl cosh@b~xl2zl !#%
G

1e2c(
k50

`
ck

k! )l 51

k E dxl dyl dzl P~xl ,yl ,zl !

3 lnF (
s

)
l

k

(
r l

expFb(
l

xlr l1b(
l

ylr ls1b(
l

zls1 1
2 bs(

l
r l GQS s(

l
r l D

)
l

k

$2ebyl cosh@b~xl1zl !#12e2byl cosh@b~xl2zl !#%
G . ~18!
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Details of the calculations leading to these expressions
be found in the Appendix.

C. Evaluation of the RS order-parameter function

Since the order-parameter functionP(x,z,y) depends on
three variables, the solution of the self-consistent equa
~14! and the evaluation of Eqs.~16!–~18! pose a formidable
challenge. However, the form of Eq.~14! as an invariant
density suggests the use of a simple population dynamic
solve the self-consistent equation and evaluate the entrop
metastable configurations and other physical quantities.
cently, this population dynamics has been used extensive
@10#. For the present problem it may be adopted as follo
We consider a large numberN of triples labeled i
51, . . . ,N of numbers $xi ,yi ,zi% with P(x,y,z)
5(1/N)( id(x2xi)d(y2yi)d(z2zi). The self-consisten
equation~14! may then be solved numerically according
the following scheme:~1! Choose an integerk at random
according to the Poisson distribution with meanc. ~2!
Choose k triples at random and use them to compu
f 22 , f 21 , f 12 , f 11 according to Eq.~15!. ~3! Chose an-
other triple i at random and se

xi5
1

4b
ln@~ f 11 f 12!/~ f 21 f 22!#,

yi5
1

4b
ln@~ f 11 f 22!/~ f 21 f 12!#,

zi5
1

4b
ln@~ f 11 f 21!/~ f 12 f 22!#.

Repeating these steps a sufficiently large number of time
ensure convergence yields an approximation for the or
parameter functionP(x,z,y), whose quality depends on th
number of triplesN used.

In the same way the expressions~16!–~18! may be evalu-
ated. Choosing a set ofk triples at random~where k is
01611
ay
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sampled from the appropriate distribution! the integrands of
Eqs. ~16!–~18! may be computed. Averaging the results
sufficiently many such steps we obtain approximations of
multiple integrals overx,y,z in these expressions.

The results discussed in the following section were o
tained with N55000, 350 000 iteration steps, and 50 0
steps to calculate Eqs.~16!–~18!.

D. Numerical simulation

To check our analytical results, evaluated numerica
against the results of numerical simulations, we use a met
based on Monte Carlo simulation of an auxiliary model a
thermodynamic integration. Denoting the number of si
with hisi>0 asNb we define the auxiliary HamiltonianH

bauxH5bH1baux~N2Nb!, ~19!

whereH is the original Hamiltonian~1! andb is a Lagrange
multiplier fixing the energyE of the original system. By
construction, the states accessed in the limitbaux→` of H
are the blocked configuration of the original Hamiltonia
with energyE fixed by the parameterb ~provided they exist!
@23#. Numerically, blocked configurations of Eq.~1! of a
given energy may thus be generated by a Monte Carlo
namics of the auxiliary Hamiltonian~19!, starting at a low
auxiliary temperature 1/baux, and gradually increasingbaux
until the ground state is found. The auxiliary temperatu
must be changed sufficiently gradually to ensure the sys
always remains in equilibrium.

Having taken the limitbaux→` the Lagrange multiplierb
is simply the inverse temperature of the blocked configu
tions. Thus the entropy of the blocked configurations may
obtained up to a constant by thermodynamic integration

E
E(b5`)

E(b)

dE b5S~b!2S~b5`!. ~20!

The numerical results of the following section were ge
erated by annealing Eq.~19! on four realizations of a random
5-5
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JOHANNES BERG AND MAURO SELLITTO PHYSICAL REVIEW E65 016115
graph withN51024 increasingbaux from 0 to 10 in steps,
0.001 every 2000 Monte Carlo sweeps. At the end of t
process the energyE, the fraction of sites with zero loca
field, and the magnetization were measured during the
250 Monte Carlo sweeps. Furthermore, we checked the
dependence of the results on the annealing rate. In the ca
the entropy, the constant of integration was obtained sim
by fitting the resulting curve to the analytic result.

III. RESULTS FOR THE TWO-SPIN MODEL

In the following we describe the results of the calculatio
of the preceding section for the casec52 and compare them
to the results of numerical simulations. In Fig. 1 we plot bo
the annealed and the quenched result for the entropy
blocked configurations. The results of the quenched ave
evaluated according to the algorithm of Sec. II C fluctu
somewhat, so the curve is not very smooth, especially
negative temperatures. Nevertheless, very good agree
between the results of numerical simulation according
Sec. II D and the quenched average of the entropy is fou
The maximum of the entropy is reached at energies aro
20.57, so a randomly chosen blocked configuration w
have this energy with a probability approaching 1 in t
thermodynamic limit. In the ground stateE521, all spins
of a cluster of connected points are aligned. Hence, the
tropy density of blocked configurations is simply the numb
of disconnected clusters of the graph times ln(2). Using
standard results of random-graph theory@1# we obtain a
ground-state entropy of 0.112 222 6. . . , which agrees with
the present result to within numerical precision.

In Fig. 2 we show the fraction of sites with zero loc
magnetic field as a function of the energy densityE, which

FIG. 1. The entropy density of metastable configurations a
function of their energy densityE. The quenched result is given b
the solid line, for comparison we also give the result of the cor
sponding annealed calculation from Sec. II A. Plus signs (1) de-
note the results of numerical simulations. At high energies~large
negative temperatures! numerical problems with the algorithm use
to solve the saddle-point equations arise.
01611
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increases monotonously withE. This effect arises since
blocked sites with nonzero magnetic field give a negat
contribution to the energy. In order to obtain blocked sta
also at high energies, the system must thus make more o
local fields equal to zero. This is also the reason for
decrease of the entropy at increasing energies.

In Fig. 3 we plot the absolute value of the magnetizati
of blocked configurations against the energy density. Ther
a second-order phase transition from configurations w
zero magnetic field at high energies, to a ferromagnetic ph
at low energies. Again the mechanism for this is simple.
order to form blocked configurations at low energies,~abso-
lutely! large local fields are required. These are achiev
most easily by giving the system a finite magnetization. T
simply reflects the analogous transition in the model with

a

-

FIG. 2. The fraction of sitesg with zero local magnetic field as
a function of the energy densityE. Plus signs (1) denote the results
of numerical simulations.

FIG. 3. The absolute value of the magnetization as a function
the energy densityE. Plus signs (1) denote the results of numerica
simulations.
5-6
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the blocking condition, although the transition occurs a
lower energy. At the transition, the RS order-parameter fu
tion changes qualitatively in the high-temperature phase
weight is concentrated atx5z50 and it remains a nontrivia
function only ofy, i.e.,P(x,y,z)5d(x) f (y)d(z), whereas in
the low-temperature phaseP(x,y,z) is a nontrivial function
of all its arguments.

In Fig. 4 we plot the energy versus the inverse tempe
ture of the blocked configurationsb for three connectivities
c52,2.5,3. We note that the kink in the curve—signifyin
the second-order nature of the phase transition—beco
more pronounced at higher connectivities. Atc53 it appears
that there is a jump in the curve, which would signify that t
transition had become first order. Furthermore, for finite r
ning times, the algorithm solving the saddle-point equatio
shows hysteresis. However, none of this is borne out
closer analysis. Near the transition, the three curves in Fi
collapse onto each other when rescaled by the widthdb over
which the transition occurs. Furthermore the hysteresis in
algorithm disappears when a small magnetic field is appl
We thus conclude that at high connectivities, the transit
remains of second order, but is characterized by a long
teau at the transition point.

Finally, in Fig. 5 the phase diagram of the transition
ferromagnetic blocked states is given. Below the percola
threshold of the graphc51 blocked states are typically no
magnetized since the graph consists of many small disc
nected clusters, flipping all spins of such a cluster leads fr
one blocked configuration to another. As a resultbc diverges
as c51 is approached from above. Increasingc the critical
value of b and of the corresponding energy decreases
notonously as expected. Nevertheless it is interesting tha
critical energy saturates already aroundc;4.

IV. GENERALIZATION TO THE THREE-SPIN MODEL

The generalization to Hamiltonians with three-spin int
actions is straightforward and we only give the results. T
Hamiltonian is defined by

FIG. 4. The energy densityE as a function of the inverse tem
peratureb for the three connectivitiesc52,2.5,3, from top to
bottom.
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H52 (
i , j ,k

Ci jkSiSjSk , ~21!

where the variableCi jk51 with i , j ,k denotes the pres
ence of a plaquette connecting sitesi , j ,k and Ci jk50 de-
notes its absence. ChoosingCi jk51(0) randomly with prob-
ability (2c/N2) (122c/N2) again defines an ensemble
random graphs, where each point is connected on averag
c plaquettes. Proceeding as in Sec.~II ! we obtain for the
replicated partition function

^^Zn~b!&&5)
sI ,tI

E dc~sI ,tI !expH 22cN/3

3 (
sI ,tI ,rI

c~sI ,trI !c~tI ,rsI !c~rI ,stI !2cN/3J
3F(

sI ,hI
E

0

2p

dhÎ /~2p!n expH 2 ihI •hÎ 11/3bhI •sI

1c(
rI ,hI

c~rI ,shI !c~hI ,srI !eiSa ĥarahaJ
3)

a
Q~hasa!GN

. ~22!

The self-consistent equation forc(sI ,tI ) is

c~sI ,tI !5e2L(
k50

`
ck

k! )l 51

k S (
rI l ,hI l

D c~r lI ,sh lI !c~h lI ,sr lI !

3expH 1
3 b(

a
S ta1(

l
r l

ah l
aDsaJ

3)
a

QXsaS ta1(
l

r l
ah l

aD C. ~23!

Using the RS ansatz~13! and taking the limitn→` one
obtains the self-consistent equation forP(x,y,z) ~14!

FIG. 5. Phase diagram of the transition to ferromagnetic bloc
configurations. The critical energy densityEc is plotted against the
average connectivityc.
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P~x,y,z!5e2c(
k50

`
ck

k! )l 51

k E dxl
1 dyl

1 dzl
1 dxl

2 dyl
2 dzl

2P~xl
1 ,yl

1 ,zl
1!P~xl

2 ,yl
2 ,zl

2!dS x2
1

4b
lnF f 11 f 12

f 21 f 22
G D

3dS y2
1

4b
lnF f 11 f 22

f 21 f 12
G D dS z2

1

4b
lnF f 11 f 21

f 12 f 22
G D , ~24!

where

f st5 f ~$xl
1 ,yl

1 ,zl
1 ,xl

2 ,yl
2 ,zl

2%,s,t!5)
l 51

k

(
r l ,h l

expH b(
l

xl
1r l1b(

l
yl

1r lh ls1b(
l

zl
1h lsJ

3expH b(
l

xl
2h l1b(

l
yl

2r lh ls1b(
l

zl
2r ls1 1

3 bs(
l

r lh l1b/3stJ QXsS t1(
l

r lh l D C. ~25!

These expressions take on the same form as their counterparts in the two-spin case~12!–~15!, except that where one term
c(sI ,tI ) stood, there are now two—a simple consequence of going from bonds connecting two sites to plaquettes of th
For completeness we also give the free energy of metastable configurations

1

N
^^ ln Z&&

52b f ~b!52~2c/3!)
l 51

3 E dxl dyl dzl P~xl ,yl ,zl !

3 lnF (
s,t,r

exp$b~x1s1y1str1z1tr1x2r1y2str1z2st1x3t1y3str1z3rs!%

)
l 51

3

„2ebyl cosh@b~xl1zl !#12e2byl cosh@b~xl2zl !#…
G

1e2c(
k50

`
ck

k! )l 51

k E dxl
1 dyl

1 dzl
1dxl

2 dyl
2 dzl

2P~xl
1 ,yl

1 ,zl
1!P~xl

2 ,yl
2 ,zl

2!

3 lnF (
s

)
l

k

(
r l ,h l

expH b(
l

~xl
1r l1yl

1r lh ls1zl
1h ls1xl

2h l1yl
2r lh ls1zl

2r ls1 1
3 sr lh l !J QS s(

l
r lh l D

)
l

k

$2ebyl
1
cosh@b~xl

11zl
1!#12e2byl

1
cosh@b~xl

12zl
1!#%$2ebyl

2
cosh@b~xl

21zl
2!#12e2byl

2
cosh@b~xl

22zl
2!#%

G .

~26!
s

in
re
w
nd

a
.

These equations may be solved in the same manner a
scribed in Sec. II C, albeit with more numerical effort.

V. MODELS WITH DISORDERED BONDS

In this section we sketch how the formalism introduced
Sec. II may be used to cover also models with disorde
bonds. The most prominent example of this case is the t
spin model on the random graph with the signs of the bo
01611
de-

d
o-
s

being61 with equal probability, the Viana-Bray model@2#

H52(
i , j

Ji j sisj . ~27!

The variablesJi j 561 with i , j denote the presence of
bond connecting sitesi , j , and Ji j 50 denotes its absence
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For Ji j 561 with equal probability the average over the d
order in the partition function~7! reads

)
i , j

F12c/N1~c/2N!S expH i(
a

ĥi
asj

a1 i(
a

ĥj
asi

aJ
1expH 2 i(

a
ĥi

asj
a2 i(

a
ĥj

asi
aJ D G

5 lim
N→`

expH 2cN/21~c/4N!

3(
i , j

FexpS i(
a

ĥi
asj

a1 i(
a

ĥj
asi

aD
1expS 2 i(

a
ĥi

asj
a2 i(

a
ĥj

asi
aD G J . ~28!

In order to decouple the two sums over the sitesi , j we may
use the same order-parameter functionc(sI ,tI )
5(1/N)( idsI sI i

ehÎ i•tI defined previously and write for Eq.~28!

expH 2~cN/2!1~c/4N!(
sI ,tI

c~sI ,tI !c~tI ,sI !

1c~sI ,2tI !c~tI ,2sI !J . ~29!

Eliminating the conjugate order parameter we obt
i ĉ(sI ,tI )5c/2@c(tI ,sI )1c(2tI ,2sI )#. The rest of the calcu-
lation proceeds as in the ferromagnetic case with the or
parameter function being symmetric under the simultane
inversion ofsI andtI .

An alternative, more cumbersome route, consists in in
ducing a new order-parameter functionc(sI ,tI )
5(1/N)( idsI sI i

(ehÎ i•tI1 ie2hÎ i•tI). Using this complex globa
order-parameter of two arguments Eq.~28! becomes

expH 2cN/21c/~4N!(
sI ,tI

c~sI ,tI !c* ~tI ,sI !J . ~30!

The remaining calculation proceeds exactly as in the cas
the ferromagnet in Sec. II, the sole difference being the
that P(x,y,z) becomes a complex function, and Eqs.~14!–
~18! acquire complex conjugates in the appropriate plac
The detailed treatment, however, would exceed the scop
this paper.

VI. CONCLUSION

In this paper we considered the statistical mechanics
metastable configurations of spin models on random gra
As a concrete example, we calculated the quenched ave
over the ensemble of random graphs of connectivityc of the
number of configurations withhisi>0 ; i for the case of the
ferromagnetic two-spin model. The central tool of the calc
lation was a global order-parameter function, which unl
the standard case of Hamiltonians composed of spin-
01611
n

r-
s

-

of
ct

s.
of

of
s.
ge

-

in

interactions of various orders, takes on the formc(sI ,tI )

5(1/N)( idsI sI i
ehÎ i•tI . The replica-symmetric ansatz for suc

an order-parameter function of two arguments was discus
and the saddle-point equation and the free energy were
rived. The saddle-point equation was solved numerically
ing a population-dynamics algorithm. The results were co
pared in detail with numerical simulations using simulat
annealing and thermodynamic integration. The general
tions of this approach to three-spin models and models w
bond disorder such as the Viana-Bray model were also
cussed.
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APPENDIX

Here we fill in the essential steps leading to the results
Sec. II. The order-parameter functionc(sI ,tI ) is introduced
via integrals overd functions represented by integrals ov

the auxiliary variablesĉ(sI ,tI ). This step turns Eq.~8! into

^^Zn~b!&&5)
sI ,tI

E dc~sI ,tI !dĉ~sI ,tI !

2p/N

3expH 2 iN(
sI ,tI

c~sI ,tI !ĉ~sI ,tI !2cN/2

1~cN/2!(
sI ,tI

c~sI ,sI !c~tI ,sI !J
3F(

sI ,hI
E

0

2p

@dhÎ /~2p!n#

3expH 2 ihI •hÎ 1 1
2 bhI •sI

1 i(
tI

ĉ~sI ,tI !eihÎ •tI J)
a

Q~hasa!GN

. ~A1!

The auxiliary variables may be eliminated trivially b
saddle-point integration givingi ĉ(sI ,tI )5c c(tI ,sI ). Inserting
this result into Eq.~A1! gives Eq.~11!. The self-consistent
equation~12! follows directly from differentiating the expo
nent of Eq.~11! with respect toc(tI ,sI ). The integral overhÎ
turns into ad function again—so the sum overhI may be
performed—after the exponential term containing the ord
parameter function has been expanded as a power serie

Now we need to insert the RS ansatz~13! into the self-
consistent equation~12!. Collecting all terms carrying replica
indices in thekth term we have
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)
l

k

(
rI l

expH b(
l

S xl(
a

r l
a1yl(

a
r l

asa1zl(
a

sa1 1
2 (

a
sar l

aD 1b/2(
a

sataJ)
a

QFsaS ta1(
l

r l
aD G

5)
a S )l

k

(
r l

a
expH b(

l
~xlr l

a1ylr l
asa1zls

a1 1
2 sar l

a!1~b/2!sataJ QFsaS ta1(
l

r l
aD G D

5expH(
a

ln f sataJ 5expH 1
4 S (

a
sa1(

a
sata1(

a
ta1nD ln f 111 1

4 S (
a

sa2(
a

sata2(
a

ta1nD ln f 121

1 1
4 S 2(

a
sa2(

a
sata1(

a
ta1nD ln f 2111 1

4 S 2(
a

sa1(
a

sata2(
a

ta1nD ln f 2121J , ~A2!

where f st is defined in Eq.~15!. In the last step, we used

(
a

dssadtta5

¦

1
4 S (

a
sa1(

a
sata1(

a
ta1nD for t5s51

1
4 S (

a
sa2(

a
sata2(

a
ta1nD for t521 s51

1
4 S 2(

a
sa2(

a
sata1(

a
ta1nD for t51s521

1
4 S 2(

a
sa1(

a
sata2(

a
ta1nD for t5s521.

~A3!

Writing is5(asa, iu5(asata, andi t 5(ata the limit n→0 may be taken. Collecting all terms ink and Fourier transform-
ing with respect tos,u,t we obtain the self-consistent equation in RS in the form~14!. The calculation of Eqs.~16!–~18!
follow the same scheme.
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